Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guanine-nucleotide-exchange factor RCC1.

نویسندگان

  • R Roepman
  • G van Duijnhoven
  • T Rosenberg
  • A J Pinckers
  • L M Bleeker-Wagemakers
  • A A Bergen
  • J Post
  • A Beck
  • R Reinhardt
  • H H Ropers
  • F P Cremers
  • W Berger
چکیده

The gene for retinitis pigmentosa 3 (RP3), the most frequent form of X-linked RP (XLRP), has been mapped previously to a chromosome interval of less than 1000 kbp between the DXS1110 marker and the OTC locus at Xp21.1-p11.4. Employing a novel technique, YAC Representation Hybridization (YRH)', we have recently identified a small XLRP associated microdeletion in this interval, as well as several putative exons including the 3' end of a gene that was truncated by the deletion. cDNA library screening and sequencing of a cosmid centromeric to the deletion has now enabled us to identify numerous additional exons and to detect several point mutations in patients with XLRP. The predicted gene product shows homology to RCC1, the guanine-nucleotide-exchange factor (GEF) of the Ras-like GTPase Ran. Our findings suggest that we have cloned the long-sought RP3 gene, and that it may encode the GEF of a retina-specific GTP-binding protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of retinitis pigmentosa GTPase regulator (RPGR) with RAB8A GTPase: implications for cilia dysfunction and photoreceptor degeneration

Defects in biogenesis or function(s) of primary cilia are associated with numerous inherited disorders (called ciliopathies) that may include retinal degeneration phenotype. The cilia-expressed gene RPGR (retinitis pigmentosa GTPase regulator) is mutated in patients with X-linked retinitis pigmentosa (XLRP) and encodes multiple protein isoforms with a common N-terminal domain homologous to regu...

متن کامل

A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3).

The X-linked RP3 locus codes for retinitis pigmentosa GTPase regulator (RPGR), a protein of unknown function with sequence homology to the guanine nucleotide exchange factor for Ran GTPase. We created an RPGR-deficient murine model by gene knockout. In the mutant mice, cone photoreceptors exhibit ectopic localization of cone opsins in the cell body and synapses and rod photoreceptors have a red...

متن کامل

Novel deletion spanning RCC1-like domain of RPGR in Japanese X-linked retinitis pigmentosa family.

PURPOSE To describe a macrodeletion spanning entire RCC1-like doman in the RPGR gene in one Japanese family with X-linked retinitis pigmentosa (XLRP). METHODS Clinical ophthalmologic examinations were performed and genomic DNA was extracted from blood samples. Genomic DNA was analyzed by Southern blot and PCR amplification with specific primers. RESULTS Patients had severe symptoms with ear...

متن کامل

Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13).

Retinitis pigmentosa (RP) is a genetically heterogeneous disorder characterized by progressive degeneration of the peripheral retina leading to night blindness and loss of visual fields. With an incidence of approximately 1 in 4000, RP can be inherited in X-linked, autosomal dominant or autosomal recessive modes. The RP13 locus for autosomal dominant RP (adRP) was placed on chromosome 17p13.3 b...

متن کامل

The balance of RanBP1 and RCC1 is critical for nuclear assembly and nuclear transport.

Ran is a small GTPase that is essential for nuclear transport, mRNA processing, maintenance of structural integrity of nuclei, and cell cycle control. RanBP1 is a highly conserved Ran guanine nucleotide dissociation inhibitor. We sought to use Xenopus egg extracts for the development of an in vitro assay for RanBP1 activity in nuclear assembly, protein import, and DNA replication. Surprisingly,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 5 7  شماره 

صفحات  -

تاریخ انتشار 1996